Configurational-Bias Algorithms
- Configurational-Bias Monte Carlo (CBMC)
- Coupled-Decoupled Configurational-Bias Monte Carlo (CD-CBMC)
- Self-Adapting Fixed-Endpoint Configurantional-Bias Monte Carlo (SAFE-CBMC)
- Aggregation-Volume-Bias Monte Carlo (AVBMC)
- Adiabatic Nuclear Electronic Sampling Monte Carlo (ANES-MC)
- Aggregation-Volume-Bias Monte Carlo with Self-Adaptive Umbrella Sampling and Histogram Reweighting (AVUS-HR)
Configurational-Bias Monte Carlo (CBMC)
Allows for the efficient sampling of the conformational space of linear chain molecules in condensed phases
- J.I. Siepmann, ‘A method for the direct calculation of chemical potentials for dense chain systems’, Mol. Phys.. 70, 1145-1158 (1990).
- J.I. Siepmann, and D. Frenkel, ‘Configurational-bias Monte Carlo - A new sampling scheme for flexible chains’, Mol. Phys.. 75, 59-70 (1992).
Coupled-Decoupled Configurational-Bias Monte Carlo (CD-CBMC)
Allows for the efficient sampling of the conformational space of branched chain molecules
- M.G. Martin, and J.I. Siepmann, ‘Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes’, J. Phys. Chem. B. 103, 4508-4517 (1999).
Self-Adapting Fixed-Endpoint Configurantional-Bias Monte Carlo (SAFE-CBMC)
Allows for the efficient sampling of the conformational space of cyclic molecules and high-molecular-weight polymers
- C.D. Wick, and J.I. Siepmann, ‘Self-adapting fixed-endpoint configurational-bias Monte Carlo method for the regrowth of interior segments of chain molecules with strong intramolecular interactions’, Macromolecules. 33, 7207-7218 (2000).
Aggregation-Volume-Bias Monte Carlo (AVBMC)
Allows for the efficient sampling of the spatial distribution of aggregating (hydrogen-bonding) molecules
- B. Chen, and J.I. Siepmann, ‘A novel Monte Carlo algorithm for simulating strongly associating fluids: Applications to water, hydrogen fluoride, and acetic acid’, J. Phys. Chem. B. 104, 8725-8734 (2000).
- B. Chen, and J.I. Siepmann, ‘Improving the efficiency of the aggregation-volume-bias Monte Carlo algorithm’, J. Phys. Chem. B. 105, 11275-11282 (2001).
Adiabatic Nuclear Electronic Sampling Monte Carlo (ANES-MC)
Allows for the efficient sampling of polarizable force fields
- B. Chen, and J.I. Siepmann, ‘Monte Carlo algorithms for simulating systems with adiabatic separation of electronic and nuclear degrees of freedom’, Theor. Chem. Acc.. 103, 87-104 (1999).
- B. Chen, J.J. Potoff, and J.I. Siepmann, ‘Adiabatic nuclear and electronic sampling Monte Carlo simulations in the Gibbs ensemble: Application to polarizable force fields for water’, J. Phys. Chem. B. 104, 2378-2390 (2000).
Aggregation-Volume-Bias Monte Carlo with Self-Adaptive Umbrella Sampling and Histogram Reweighting (AVUS-HR)
Allows for the exceedingly efficient sampling of nucleation phenomena
- B. Chen, J.I. Siepmann, and M.L. Klein, ‘Simulating vapor-liquid nucleation of water: A combined histogram-reweighting and aggregation-volume-bias Monte Carlo investigation for fixed-charge and polarizable models’, J. Phys. Chem. A. 109, 1137-1145 (2005).
Comments
Comments powered by Disqus